
CHEMISTRY STUDY MATERIALS FOR CLASS 10 GANESH KUMAR DATE:- 25/05/2020

Chapter- 3 (Metals and Non-metals- Revision Notes)

REACTION WITH WATER: Metal oxides on reaction with water form alkalis.

Magnesium Hot
waterMagnesium
hydroxideHydrogen
gas

In case of Ca and Mg, the metal starts floating due to bubbles of hydrogen gas sticking to its surface.

 $4Al(s) + 6H_2O(l) \longrightarrow 2Al_2O_3(aq) + 3H_2(g)$ Aluminium Steam Aluminium Hydrogen oxide gas $3Fe(s) + 4H_2O(l) \longrightarrow Fe_3O_4(aq) + 4H_2(g)$ Fereso-ferric Iron Steam Hydrogen oxide gas \rightarrow ZnO (aq) + 2H₂(g) Zn(s) + $2H_2O(l)$ -Zinc Zinc Hydrogen Steam oxide gas

Inert metals like Au and Ag do not react with water.

REACTION WITH ACIDS

Metal +dilute acid → Salt + Hydrogen gas

Metals react with dilute hydrochloric acid and dilute sulphuric acid to form chlorides and sulphates

$\begin{array}{c} Zn(s) + 2HCl (aq) \longrightarrow \\ Zinc & Hydrochloric \end{array}$	$ZnCl_2(aq) + H_2(g)$ Zinc Hydrogen
acid	chloride gas
Fe(s) + 2HCl (aq)	FeCl ₂ (aq) + H ₂ (g) Ferrous Hydrogen
acid	chloride gas
$Zn(s) + 2HCl (aq) \longrightarrow$ Zinc Hydrochloric	$ZnCl_2(aq) + H_2(g)$ Zinc Hydrogen
acid	chloride gas
Mg(s) + 2HCl (aq) —— Magnesium Hydrochloric	→ $MgCl_2(aq) + H_2(g)$ Magnesium Hydrogen
acid	chloride gas
2Al(s) + 3H ₂ SO ₄ (aq) — Aluminium Sulphuric	$\rightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$ Aluminium Hydrogen
acid	sulphate gas
$2K(s) + H_2SO_4(aq)$ — Potassium Sulphuric acid	$\begin{array}{c} \rightarrow K_2SO_4(aq) + H_2(g) \\ Potassium \qquad Hydrogen \\ sulphate \qquad gas \end{array}$

Note: Copper, mercury and silver don't react with dilute acids.

Hydrogen gas produced is oxidised to water. This happens because HNO_3 is a strong oxidising agent when metals react with nitric acid (HNO_3) . But Mg and Mn, react with very dilute nitric acid(1%- 2%) to evolve hydrogen gas. Due to formation a inert nitrate layer of Mn and Mg, nitric acid does not further react with Mn and Mg.

$\begin{array}{r} Mn(s) + HNO_3 (aq) \longrightarrow \\ Manganese & Nitric \\ acid(1\% - 2\%) \end{array}$	Mn(NO ₃) ₂ Manganese nitrate	+	H₂(g) Hydrogen gas
$\begin{array}{c} Mn(s) + HNO_3(aq) \\ Magnesium \\ acid(1\% - 2\%) \end{array}$	Mn(NO ₃) ₂ Magnesium nitrate	+	H₂(g) Hydrogen gas
